Aging speech recognition with speaker adaptation techniques: Study on medium vocabulary continuous Bengali speech

نویسندگان

  • Biswajit Das
  • Sandipan Mandal
  • Pabitra Mitra
  • Anupam Basu
چکیده

The article describes the speech recognition system development in Bengali language for aging population with various adaptation techniques. Variability in acoustic characteristics among different speakers degrades speech recognition accuracy. In general, perceptual as well as acoustical variations exists among speakers, but variations are more pronounced between young and aged population. Deviation in voice source features between two age groups, affect the speech recognition performance. Existing automatic speech recognition algorithms demands large amount of training data with all variability to develop a robust speech recognition system. However, speaker normalization and adaptation techniques attempts to reduce inter-speaker or intra-speaker acoustic variability without having large amount of training data. Here, conventional acoustic model adaptation method e.g. vocal tract length normalization, maximum likelihood linear regression and/or maximum a posteriori are combined in the current study to improve recognition accuracy. Moreover, maximum mutual information estimation technique has been implemented in this study. 2012 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Speaker Adaptation in Continuous Speech Recognition Using MLLR-Based MAP Estimation

A variety of methods are used for speaker adaptation in speech recognition. In some techniques, such as MAP estimation, only the models with available training data are updated. Hence, large amounts of training data are required in order to have significant recognition improvements. In some others, such as MLLR, where several general transformations are applied to model clusters, the results ar...

متن کامل

Speaker Adaptation in Continuous Speech Recognition Using MLLR-Based MAP Estimation

A variety of methods are used for speaker adaptation in speech recognition. In some techniques, such as MAP estimation, only the models with available training data are updated. Hence, large amounts of training data are required in order to have significant recognition improvements. In some others, such as MLLR, where several general transformations are applied to model clusters, the results ar...

متن کامل

Speaker-independent upfront dialect adaptation in a large vocabulary continuous speech recognizer

Large vocabulary continuous speech recognition systems show a signi cant decrease in performance if a users pronunciation di ers largely from those observed during system training. This can be considered as the main reason why most commercially available systems recommend| if not enforce | the individual end user to read an enrollment script for the speaker dependent reestimation of acoustic mo...

متن کامل

Explorer Unsupervised cross - lingual speaker adaptation for HMM - based speech synthesis

In the EMIME project, we are developing a mobile device that performs personalized speech-to-speech translation such that a user’s spoken input in one language is used to produce spoken output in another language, while continuing to sound like the user’s voice. We integrate two techniques, unsupervised adaptation for HMM-based TTS using a wordbased large-vocabulary continuous speech recognizer...

متن کامل

Remes Speaker - Based Segmentation and Adaptation in Automatic Speech Recognition

With proper training, automatic speech recognition works quite well when tested in conditions similar to the training conditions, but with a new speaker or a new environment the system performance often degrades. Speaker-based adaptation alters the speech recognition system to better match a specific speaker and thus improves the speech recognition results. In order to use speaker adaptation, t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Pattern Recognition Letters

دوره 34  شماره 

صفحات  -

تاریخ انتشار 2013